Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.29.498117

ABSTRACT

Neurological manifestations are common in COVID-19, the disease caused by SARS-CoV-2. Despite reports of SARS-CoV-2 detection in the brain and cerebrospinal fluid of COVID-19 patients, it's still unclear whether the virus can infect the central nervous system, and which neuropathological alterations can be ascribed to viral tropism, rather than immune mediated mechanisms. Here, we assess neuropathology alterations in 24 COVID-19 patients and 18 matched controls who died due to pneumonia / respiratory failure. Aside from a wide spectrum of neuropathological alterations, SARS-CoV-2-immunoreactive neurons were detected in specific brainstem nuclei of 5 COVID-19 subjects. Viral RNA was also detected by real-time RT-PCR. Quantification of reactive microglia revealed an anatomically segregated pattern of inflammation within affected brainstem regions, and was higher when compared to controls. While the results of this study support the neuroinvasive potential of SARS-CoV-2, the role of SARS-CoV-2 neurotropism in COVID-19 and its long-term sequelae require further investigation.


Subject(s)
Infections , Pneumonia , Severe Acute Respiratory Syndrome , COVID-19 , Inflammation , Respiratory Insufficiency
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1055802.v1

ABSTRACT

Neurological manifestations are common in COVID-19, the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite some reports of detection of SARS-CoV-2 in the brain and cerebrospinal fluid of patients with COVID-19, it is still unclear whether the virus can infect the central nervous system (CNS), and which neuropathological alterations can be ascribed to viral tropism rather than immune-mediated mechanisms. Available autopsy reports are often conflictual, reporting a heterogeneous spectrum of neuropathological alterations, while viral proteins and RNA were detected only in sparse cells within the brainstem; furthermore, there appears to be no consistent correlation between viral invasion and neuropathological alterations to date. Here, we assess the neuropathological changes occurring in 24 patients who died following a diagnosis of SARS-CoV-2 infection in Italy during the COVID-19 pandemic (from March 2020 to May 2021) and 10 age-matched controls with comparable medical conditions. Aside from a wide spectrum of neuropathological alterations, including astrogliosis, sparse lympho-monocytic infiltrations and several instances of small vessel thromboses, we identified 5 COVID-19 subjects presenting SARS-CoV-2-immunoreactive neurons within the boundaries of the solitary tract nucleus, nucleus ambiguus and substantia nigra in the brainstem. In these subjects, viral RNA was also detected by real-time RT-PCR. Quantification of reactive microglia revealed an anatomically segregated pattern of inflammation targeting mainly the medulla oblongata and the mesencephalon, and was significantly higher when compared to controls. However, SARS-CoV-2 direct invasion did not appear to correlate with the severity of neuropathological changes. The results of this study support the neuroinvasive potential of SARS-CoV-2 by demonstrating the presence of viral proteins and genome sequences within the human brainstem, but further investigation is required to identify the link between invasion and consequent neuropathological alterations in humans.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.17.440278

ABSTRACT

SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients.


Subject(s)
Coronavirus Infections , Multiple Organ Failure , Critical Illness , Severe Acute Respiratory Syndrome , COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.09.374173

ABSTRACT

Intrinsically disordered proteins (IDPs) play essential roles in regulating physiological processes in eukaryotic cells. Many virus use their own IDPs to hack these processes to disactive host defenses and promote viral growth. Thus, viral IDPs are attractive drug targets. While IDPs are hard to study by X-ray crystallography or cryo-EM, atomic level information on their conformational perferences and dynamics can be obtained using NMR spectroscopy. SARS-CoV-2 Nsp2 interacts with human proteins that regulate translation initiation and endosome vesicle sorting, and the C-terminal region of this protein is predicted to be disordered. Molecules that block these interactions could be valuable leads for drug development. To enable inhibitor screening and to uncover conformational preferences and dynamics, we have expressed and purified the 13C,15N-labeled C-terminal region of Nsp2. The 13C{beta} and backbone 13CO, 1HN, 13C and 15N nuclei were assigned by analysis of a series of 2D 1H-15N HSQC and 13C-15N CON as well as 3D HNCO, HNCA, CBCAcoNH and HncocaNH spectra. Overall, the chemical shift data confirm that this region is chiefly disordered, but contains two five-residue segments that adopt a small population of {beta}-strand structure. Whereas the region is flexible on ms/ms timescales as gauged by T1{rho} measurements, the {1H}-15N NOEs reveal a flexibility on ns/ps timescales that is midway between a fully flexible and a completely rigid chain.

5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.09.374082

ABSTRACT

A workflow for SARS-CoV-2 epitope discovery on peptide microarrays is herein reported. The process started with a proteome-wide screening of immunoreactivity based on the use of a high-density microarray followed by a refinement and validation phase on a restricted panel of probes using microarrays with tailored peptide immobilization through a click-based strategy. Progressively larger, independent cohorts of Covid-19 positive sera were tested in the refinement processes, leading to the identification of immunodominant regions on SARS-CoV-2 Spike (S), Nucleocapsid (N) protein and Orf1ab polyprotein. A summary study testing 50 serum samples highlighted an epitope of the N protein (region 155-171) providing 92% sensitivity and 100% specificity of IgG detection in Covid-19 samples thus being a promising candidate for rapid implementation in serological tests.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL